Implementing Files
Linked List Allocation

File A
—— —— —_ —-+—| O
File File File File File
block block block block block
0 1 2 3 4
TAysis 7 1
Bloek
File B
1 B | 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14

block

Storing a file as a linked list of disk blocks

Link List Allocation
Advantages

* No space 1s lost to fragmentation
— All disk blocks can be used

» Relatively simple to implement
— Need the address of the first block

* Sequential reads are fast

— Blocks are read in sequence

Linked List Allocation
Disadvantages

 Random access 1s very slow

— To read block n, one has to read all the blocks
from 1 to n-1
* A similar technique without this

disadvantage 1s the file allocation table
(FAT).

Implementing Files

Physical
block

0

0o N o o0k~ W N =

4 4 a4 a4 a4
g B~ W N = O O

FAT

10

11

<~ File A starts here

~—— File B starts here

12

14

—<—— Unused block

Linked list allocation using a file allocation table in RAM

FAT Advantages

e Random access 1s feasible

— the FAT for a file can be read 1n a single
operation and stored in memory

e Simplicity
— Need to keep track of the first block of the file

FAT Disadvantages

 The FAT has to be kept in memory
— With a 20GB disk and 1KB blocks we need
about 60MB of RAM to store the table

e Newer versions of FAT use the notion of
clusters

— A contiguous sequence of sectors are grouped
into clusters

— This minimizes memory requirements

Implementing Files
[-Nodes

File Attributes
Address of disk block 0 =
Address of disk block 1 i
Address of disk block 2 —
Address of disk block 3 —
Address of disk block 4 —
Address of disk block 5 —
Address of disk block 6 —
Address of disk block 7 —
Address of block of pointers >

Disk block

containing

additional
disk addresses

An example 1-node

Implementing Directories (1)

games i attributes games i 1

mail : attributes mail l 4

news i attributes news i +—
I |

work | attributes work : \\

(a) (b) Data structure
containing the
attributes

(a) A simple directory

fixed size entries
disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an 1-node

Implementing Directories (2)

Entry
for one
file

File 1 entry length

File 1 attributes

L Pointer to file 1's name

File 1 attributes

(0]

1

c|lOo| =

Pointer to file 2's name

©|T|®D|T

d

t X

File 2 attributes

File 2 entry length

|, Pointer to file 3's name

File 2 attributes

File 3 attributes

p e r s
o n n e
' X

File 3 entry length

File 3 attributes

—

X

o|o|J]Oo|®|T

| o | o |

(@)

-~ |J|=1—~]ClO]| =
ol|o (v |M{a]~|o
o|—|o|o|a

(b)

|

Entry
for one
file

Heap

* Two ways of handling long file names 1n directory
— (a) In-line
— (b) In a heap

Shared Files (1)

. Root directory

Shared file

File system containing a shared file

10

Shared Files (2)

C's directory B's directory C's directory B's directory
\ \
/ \ / \
Owner = C Owner =C Owner = C
Count = 1 Count =2 Count = 1

O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link 1s created

(c)After the original owner removes the file

11

Disk Space Management
Free Blocks Management

42 s 230 " 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 //) 482 // 141 1101111101110111
A 1 KB disk block can hold 256 A bit map

32-bit disk block numbers
(@) (b)

(a) Storing the free list on a linked list
(b) A bit map

13

Disk Space Management

Disk Quotas

Open file table Quota table
Attributes Soft block limit
disk addresses Hard block limit
U =8
Rel Current # of blocks
Quota pointer — # Block warnings left Quota
> record
Soft file limit for user 8
Hard file limit
Current # of files
i T # File warnings left
. . .
Quotas for keeping track of each user’s disk use

14

